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PREFACE

This report describes part of a comprehensive and continuing program of re-

search in multispectral remote sensing of the environment from aircraft and

satellites. The research is being carried out for NASA's Lyndon B. Johnson Space

Center, Houston, Texas, by the Environmental Research Institute of Michigan

(formerly the Willow Run Laboratories, a unit of The University of Michigan's

Institute of Science and Technology). The basic objective of this program is to

develop remote sensing as a practical tool for obtaining extensive environmental

information quickly and economically.

In recent times, many new applications of multispectral sensing have come

into being. These include agricultural census-taking, detection of diseased plants,

urban land studies, measurement of water depth, studies of air and water pollu-

tion, and general assessment of land-use patterns. Yet the techniques employed

remain limited by the resolution capability of a multispectral scanner. Techniques

described in this report may help to overcome this limitation by enabling either

examination of the contents of a given scanner resolution cell or, through averaging,

faster estimation of the contents of a larger area.

To date, our work on estimation of proportions has included: (1) extension

of the signature concept to a mixture of objects; (2) development of a statistical

and geometric model for sets and mixtures of signatures; (3) evaluation of compu-

tational methods used to estimate proportions of a mixture by maximum likelihood;

(4) creation of a computational technique for assessing the expected accuracy of

estimation as a function of the signature set; (5) development of techniques to

identify alien objects; (6) testing and evaluating the proportion estimation algo-

rithms on artificial as well as actual multispectral scanner data; (7) examining

the problem of establishing signatures when pure samples of the objects of in-

terest are not available; and (8) evaluation of alternative estimators.

The research covered in this report was performed under Contract NAS9-9784,
Task III, and covers the period from 1 February 1973 through 31 January 1974. Dr.

Andrew Potter has been Technical Monitor for NASA. The program was directed

by R. R. Legault, Vice-President of the Environmental Research Institute of Michi-

gan (ERIM); J. D. Erickson, Principal Investigator and Head of the ERIM Informa-

tion Systems and Analysis Department; and R. F. Nalepka, Head of the ERIM Multi-

spectral Analysis Section. The ERIM number for this report is 190100-25-T.

The authors acknowledge the direction provided by Mr. R. R. Legault, Dr. J. D.

Erickson, and Mr. R. F. Nalepka; the technical counsel furnished by Mr. R. J. Kauth,
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Mr. W. A. Malila, and Dr. R. B. Crane; and the secretarial services of Miss D.

Dickerson, Mrs. L. A. Parker, and Mrs. D. Humphrey.
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1
SUMMARY

The potential applications of remote sensing appear numerous. However, some of these

applications are hampered by the limited spatial resolution of the sensing device. To surmount

this difficulty, procedures have been developed for estimating proportions of objects within a

single pixel of a multispectral scanner.

This report covers a third phase in the development of proportion estimation techniques.

The first two phases included formulation of a solution to the problem, development of suitable

algorithms for effective computation, demonstration of feasibility on more or less artificial

data, and the pinpointing of problem areas.

This third phase in the development of proportion estimation techniques has focused on prob-

lems tending to limit operational usefulness. The speed of the proportion estimation program

was increased by theoretical advances in the basic algorithm and by improvements in alien

object detection procedures. Other attempts to increase speed included studies of averaging

procedures for estimating proportions of objects in a group of pixels and in the use of a sim-
plified proportion estimator. The problem of setting the alien object threshold parameter was
studied, but an effective solution not obtained.

In addition, proportion estimation techniques were tested on a limited amount of ERTS-1
data where sufficient ground truth data were available. Results, though disappointing, indicate
the need for technique modifications and further experimentation with real data sets.
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2
INTRODUCTION

In recent years the staff at ERIM has participated in the development of various tech-

niques for using multispectral remote sensing in many applications, including agricultural

land use measurement, rock identification, and water depth measurement.

In conventional multispectral recognition, the total area of each ground material is mea-

sured by identifying the material in each ground area (pixel) covered by one resolution element

of a multispectral scanner. The total area covered by a ground material is found by adding up

the pixels identified with that material. If almost every pixel in the ground scene contains

just one of the possible materials, this technique provides adequate estimates of acreages. How-

ever, if the pixel contains more than one material in substantial amounts, the pixel cannot be

properly classified. For ERTS-1 satellite data, for example, in which each pixel covers about

1.1 acres, the number of pixels containing more than one material may approach 30% of the total

area for agricultural crops in the corn belt.

The purpose of the present effort is to obtain improved area estimates of ground materials

in these cases. We attempt to overcome the problem of boundary pixels byestimating the pro-

portions of materials within each single pixel.

Since its inception, this effort has consisted of a mix of theoretical model studies and tests

with both simulated data and modest amounts of ground-truthed real data. Now that real data

sets with adequate associated ground truth are becoming available, we will be able to utilize

these in testing and development of mixtures procedures. The past history of the effort is

summarized below to provide a context for this report.

Our work on estimation of proportions was accomplished in several phases. In the first

phase [1, 2], a mathematical model was constructed which related the multispectral signatures

of a mixture to the signatures of component materials. This model permitted the maximum

likelihood estimate of the proportion vector to be formulated in terms of the observed data

point. The computational aspects of the problem required this simplification: that all of the

covariance matrices of the signatures of the component materials be taken as equal to their

average. Theoretical and empirical results supported the validity of this assumption. With

this simplification, proportion estimation becomes a quadratic programming problem. Several

existing computational methods of quadratic programming were adapted and tested on simulated

scanner data. Results indicated that this method for proportion estimation was feasible.

The second phase of the program [ 3] included investigating the problem of detecting

alien objects-i.e., objects in the scene not represented in the signature set. A procedure was

devised for rejecting those pixels probably containing significant amounts of alien materials.

In addition, aircraft scanner data were smoothed over ERTS-sized resolution elements to

8
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simulate spaceborne scanner data. When proportion estimation techniques were tested on this

data, estimates of crop acreage based on the estimated proportions were found to be better

than estimates obtained with conventional recognition techniques.

The third phase, covering the period of this report, was devoted to investigating problems

in proportion estimation that limit its operational usefulness -namely computation time and

inaccuracy stemming from the intrusion of alien objects. In addition, some preliminary trials

were made with ERTS-1 data. Increased speed was achieved by improvement in the basic algo-

rithm, by conversion to a more advanced computer, and by the further development of data

averaging prior to estimating proportions. A reduction in computation time -by a factor of about

seven was attributed to improvements in the basic algorithm; the advanced computer employed

contributed a reduction by a factor of about two. In absolute terms, it required about 20 msec

to estimate the proportions of five materials from 12-channel data. Averaging improved the

speed of estimation by a factor approximately equal to the number of data points included in

the average. (Results of theoretical analyses and simulated tests indicate that averaging may,

under certain conditions, even improve the accuracy of proportion estimates.) With the im-

proved proportion estimation algorithm, an ERTS frame containing about 10 7 pixels can be

processed in about two hours by averaging signals in groups of 26. It would take over four hours

to classify the pixels of the ERTS frame into seven signature categories by recognition process-

ing using a linear decision rule.

Also, in order to achieve increased speed, a theoretically less satisfactory but computa-

tionally more tractable estimator of proportions was investigated. Tests on simulated data

indicated that although computation time decreased by about 1/3, the estimate's mean-square

error increased by about 1/3 on a pixel-by-pixel basis. A surprising result of tests with sim-

ulated space data indicated that the new estimate could improve accuracy when estimates are

averaged over a sufficient number of pixels (in the case of these tests, more than 27).

In addition, during this phase, a new procedure was devised for detecting alien objects.

This procedure depends upon setting the value of a single parameter called the alien object

threshold. Tests with simulated data to determine a satisfactory method of setting this thresh-

old were inconclusive.

During the course of the year the mixtures algorithm was applied to three ERTS-1 data
sets. Two of these -involving, respectively, lakes and rice fields -are reported elsewhere

[4, 5]. The third case, a preliminary investigation of the use of the mixtures algorithm in a
general agricultural situation utilizing data gathered under the CITARS (Crop Identification
Technology Assessment for Remote Sensing) program, is reported here in Section 7.

The results reported for lakes and for rice fields are most encouraging. These were

achieved, however, by employing some special procedures appropriate to the situations. In the
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case of lakes, a special detection threshold was set to keep slight indications of water in many

pixels from accumulating to a large value. In the case of rice,mixtures were calculated only

on those elements located on the boundaries between the rice fields.

In the case of CITARS, the data represent a low contrast scene relative to the other two

cases, so no special procedures were used. The results to date on this set of CITARS data are

not impressive. It is evident that in order to develop a mixtures algorithm which will be auto-

matic and effective when the spectral information is limited, or during seasons when contrast

is low, additional procedures will have to be devised to complement the present algorithm. The

only practical way to achieve this will be by utilizing large data sets with excellent ground

truth. The past lack of such data has imposed a major constraint on the development of the

proportion estimation technique. We are hopeful that the CITARS data will fill this need.

The next section (Section 3) summarizes our approach to the proportion estimation prob-

lem, describing improvements in the basic algorithm and some associated computations. Theo-

retical and numerical results relating to proportion estimation using averaging procedures are

presented in Section 4. In Section 5, a simplified estimator of proportions is introduced and

compared with the standard estimator. Section 6 reviews our studies of the effect of the alien

object threshold setting. Section 7 presents preliminary results of processing a limited amount

of ERTS-1 data in an agricultural situation. The appendices contain proofs of theorems and

descriptions of computer programs associated with estimation of proportions.

10
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3
APPROACH TO PROPORTION ESTIMATION

This section summarizes ERIM's basic approach to the proportion estimation problem.

(See also Refs. [1, 2, 3] for more detail.) The remainder of this section is devoted to the now

rewritten computer program (MIXMAP). Improvements made during the reporting period in

speed of calculation are introduced in Section 3.2, and the necessary programming is detailed

in Appendix A. Modifications of the alien object test to improve both speed and accuracy are

described in Section 3.3. (Results of numerical trials on simulated data are reserved for Sec-

tion 6.) Finally in Section 3.4, under the heading of signature analysis, some preliminaries to

the basic proportion estimation calculation are described. Signature analysis provides a mea-

sure of the expected quality of the estimates to be obtained from a given signature set.

3.1 MODEL FOR SIGNATURES OF MIXTURES

When the IFOV of a multispectral scanner is large with respect to the structure of the scene

being scanned, a single resolution cell or pixel may contain more than a single object or ma-

terial. A mathematical model has been constructed which relates the signature of a mixture of

materials to the signatures of the component materials. Suppose the scanner has n spectral

channels and that the signature of object class i, where 1 - i _ m, is represented by the n-

dimensional Gaussian distribution with mean A. and covariance matrix M.. Let the proportion
X 2 mt 1

of object class i be i and let X be the vector ( , 2 ,. .. , )t, where the superscript t denotes

transpose. The signature of the mixture with proportion vector X is taken to be a Gaussian

distribution, with mean AX and covariance matrix Mh given by

A = -XiAi = AX

M = ATiM i

where A is the matrix with i column A i. These formulas constitute our model for signatures

of mixtures of materials in terms of signatures of the individual materials.

3.2 ESTIMATION OF PROPORTIONS

The model for a mixture signature can be used to estimate the proportion vector A corre-

sponding to a signal data vector from a multispectral scanner. Let y denote the n-dimensional

data vector from the scanner. A maximum likelihood estimate of the proportion vector A [2] is

a value of A which minimizes

F(A) = in MXI + <y - AX, M l(y - Ah)

11
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subject to the constraints that

2h i1= and X 0 for 1 i m

Here MI denotes the determinant of M, M- 1 is its inverse, and <u, v> denotes the inner or dot

product of the vectors u and v.*

In general, minimizing F(X) subject to the given constraints is quite difficult. Investigations

[2] showed that a good approximation to the minimal X could be obtained if a simplifying assump-

tion is made. The assumption is that the average of the covariance matrices of the pure signa-

tures can be substituted for each M.. By using the simplifying assumption and applying a linear

transformation which reduces the common covariance matrix to the identity, the problem of

estimating X becomes one of minimizing a function G(X) of the form

G(X) = I y - Al 2

subject to the constraints on X. Now y represents the transformed data point, and Ah the mean

of the signature associated with the proportion vector X after the pure signature means have

also been transformed.

The problem of minimizing G(A) subject to the constraints on A can be viewed geometrically.

The set of points A = AX, where X is a proportion vector, is the convex hull of the A. and is

called the signature simplex. The problem is to find a proportion vector X such that AX is the

point in the signature simplex closest to the data point y.

A

The optimal \ will be unique if the signature simplex is non-degenerate, i.e., has positive

m - 1 dimensional volume. This is equivalent to the (n+l)-dimensional vectors (A, 1) being

linearly independent. We shall always assume this to be the case. Non-degeneracy of the

signature simplex implies that the number of materials m in the pure signature set does not

exceed the number of spectral channels n by more than one.
A

Another estimator for X is considered in Section 5; therefore, to avoid confusion, X is

called the "standard" estimator.

*Salvato [6] has pointed out the relationship of the ERIM proportion estimation model to the
TRW mixtures model [7]. The two models are mathematically equivalent under certain condi-
tions.
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The problem of minimizing G(A) can be identified as a quadratic programming problem.

In our previous work, a number of extant algorithms were adapted, the most successful based

on the method of Theil and van de Panne. Details of the method can be found in Refs. [2, 6].

An improved version of this algorithm was programmed for the IBM 7094 computer during this

contract period. The theoretical basis and programming details are given in:Appendix A. This

version is about 14 times faster than the old version which was programmed for theCDC 1604

computer-a factor of 7 is attributable to improved methodology, and a factor of 2 is attribut-

able to the more advanced computer. It now takes about 20 msec to estimate a mixture of

5 materials with 12 channels of data.

The Theil and van de Panne method adapted to the minimization of G(X) subject to the con-

straints on A is described in Ref. [2, (Section 1.3)]. It depends upon projections of the data point

y onto the linear hulls of certain subsets T of vertices Ai of the transformed signature simplex.

The linear hull of a finite set of vectors v1 , . . . , r is the set of all vectors of the form
r r

I wv with rj =1
j=1 j=1

When the subset of vertices contains all of the Ai, 1 i 5 m, then the projection of y is AX where

is the solution to

1r r 1 A1  g
11F m 1 

• g 2  (1)

rml. . mm 1

1 1...1 0 A g
1

and

r.. = <A., A>, gi = <A., y >

When the subset T does not contain all the vertices, the projection of y onto the linear hull of

the vertices in T is obtained as follows. For each i for which A i is not in T, delete. the i-th row

and column of the matrix in the system of equations (1). Also delete hi and gi from the vectors

and [ and consider the remaining system. For example, if T contains all the A. but A 1

and A 3 , the linear system corresponding to T becomes:

13
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22 F24 F25 . 2m I g2

42 F44 r45 . 4m 1 g2

r52 r 54  r55 r5m 1 g5

m2 rm4 rm5... mm 1 m

1 1 1 ... 1 0 A1

The projection y onto the linear hull of the vertices in T is then given by AX where = 0 for

Ai not in T, and Xt is the value in the solution of the linear system corresponding to T for Ai ,
in T.

The new program achieves greatly increased speed by precomputing and storing the inverse

of the coefficient matrix in the linear system corresponding to each possible subset T. Addi-

tional efficiency is attained by utilizing recursive relationships between successive projections

required by the Theil and van de Panne method.

3.3 DETECTION OF ALIEN OBJECTS

Estimating proportions of unresolved objects from a signal y is based on the assumption

that the signal comes from a pixel which contains a mixture of materials. These materials

are represented by known signatures that constitute the pure signature set. If the pixel should

contain a material not represented in the signature set, significant additional error in the esti-

mate of proportions may result. The amount of this error depends upon the proportion of these

alien materials and the geometric relationship of their signatures to those in the pure signature

set. Those materials occurring in a scene but not represented in the pure signature set are

referred to as alien materials or alien objects. Procedures have been designed to reduce the

error resulting from the presence of alien objects. These procedures take the form of thresh-

olding tests -hence the designation "alien object threshold."

One might attempt to avoid the alien object problem by obtaining signatures for all materials

present inthe scene. This approach is usually impractical because of the large number of mate-

rials present and the impossibility of obtaining definitive signatures for many of them. An alterna-

tive is to use essentially a chi-square test as in conventional recognition processing. Some modi-

fications are necessary when averaging procedures are also employed.

The new mixtures program contains improved procedures for dealing with alien objects.

These procedures can be described most easily in terms of the pure signature set and signals

after a linear transformation has been employed. After this transformation, we assume that

14
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the i-th material in the pure signature set has mean Ai, and its covariance matrix is the identity.
Now given a signal (data point) y from a pixel with unknown proportions of various materials,
the estimate X of the proportion is obtained as follows. Let Z denote the point in the signature
simplex closest to y. Then Z may be represented in the form

A
Z = AX

A
where X is a proportion vector and is taken as the estimate of proportions in the pixel repre-

sented by the signal y. In order to apply an alien object test, we ask, "What is the probability

that we would have observed the signal with value exceeding y if the true proportion of the pixel
A

was A ?" Assuming Gaussian signature distributions, this amounts to a chi-square test with n

degrees of freedom, where n is the number of spectral channels used. The level of significance

is determined by a value Xo, which is the alien object threshold. If

!ly- z ! 2 = ly - A 2 > 2

then the estimate fails the chi-square test; we then say that the pixel contains significant

amounts of alien materials and make no estimate of proportions for the pixel in question. If
the estimate passes the test, we accept it as the estimate of proportions of materials in the pixel
in question. No significant theoretical results have been obtained as to where the threshold level

2
Xo should be set in practice, but results of empirical tests are presented in Section 6. This

situation is analogous to the chi-square threshold setting in conventional recognition, where it was
found that a very high threshold setting was most useful.

In effect, the alien object test is as described for proportion estimation on a pixel-by-pixel

basis. However, to reduce computation time, a screening test is also employed in practice.

This screening test avoids actual computation of the proportion estimate for some fraction of

the cases where the estimate would fail the alien object test. The screening test is computa-

tionally rapid and works as follows. Let Z denote the point in the signature simplex closest to
the signal y. Set

d 2 = Ily- Z 2

Let LA denote the linear hull of the signature simplex, i.e., LA is the set of points of the form

A7 where the sum of the components of 77 is one. (Note that the components are not necessarily
positive.) Let Py denote the orthogonal projection of the point y onto LA; i.e., Py is the point in
LA closest to y. Set

2 = ily- PyI 2

d I -_

2

15
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Then

2 2 2
d= dl+d

2

Now let Py = A7. If the components of 77 are non-negative, then set 62 = 0. If some compo-

nent of 7 is negative, then Py falls outside the signature simplex and there is an extended

simplex such that each face is parallel to its corresponding face in the signature simplex, the

hyperplane through each face of the extended simplex is at a distance 62 from the hyperplane

of the corresponding signature simplex, and Py is in a face of this extended simplex. Then

62 < d d

Set

2 2 2
6 =d +6 21 2

Then

62 < d 2

If the alien object threshold is Xo, then the screening test

52 > X2

will eliminate points that would fail the alien object test, but will accept points that may or may

not fail it after d 2 is computed. The reason for using the screening test is that 62 is easier to

compute than d 2 , and 62 is often a good approximation to d 2

In certain averaging procedures, the screening test is used exclusively to maintain com-

putational efficiency. It is used as follows. Let yl', . . " ' YN be signals from N pixels. Of

these N signals, let yj, , y'k be the signals which pass the alien object screening test. Let
1 A

y be the average of these N1 signals and let X denote the proportion estimate associated with y.
A

Then X is taken as the estimate of proportions of materials in the region represented by aggre-

gate of pixels corresponding to the signals y' ... , YN1. The components of (N 1/N) A are

taken as estimates of the proportions of the materials in the region covered by all N pixels. One

of the advantages of averaging is that only a single proportion estimate is required for the re-

gion represented by many signals. Using d 2 instead of 62 for alien object detection in the averag-

ing procedure would require, in effect, estimation of a proportion vector for each individual sig-

nal and thus would cause the loss of the speed advantage inherent in averaging.
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3.4 SIGNATURE ANALYSIS

The quality of the estimates of proportions one can expect can be determined to a large ex-
tent by examining the pure signature set. In recognition processing we know that the quality of
results depends upon the distances between pairs of signature means relative to their spreads
(covariances). When these distances are large, good results can be expected. Not only is this
requirement necessary for good proportion estimates, but a more stringent condition must be
satisfied: that no pure signature be close in a probability sense to any'signature of a mixture
of the other materials.

A feature of the improved proportion estimation program is a simple test called geometric
signature analysis. We deal with the transformed signature simplex with vertices A., 1 : i _ m,
and assume that the common covariance matrix of all the transformed signatures is the identity.
Let r. be the distance of Ai to the closest point in the face of the signature simplex opposite A..1 1 

1
The face opposite A. is the convex hull of all the vertices A. except for A.. Then r. measures1 ] 1 1
the smallest distance, in standard deviation units, of A. tothe mean of a mixture of the other1
materials in the signature set. If r. is small, we would expect data points representing A i to be
confused with data points representing mixtures of the other materials. Figure 1 is an example
of a signature simplex well-conditioned for proportion estimation. The circles at the vertices
indicate the spread of the distributions at the vertices; these circles are formed by points which
are one standard deviation away from the vertex. Each vertex is several standard units away
from the closest point in the opposite face. Figure 2, onthe other hand, is an example of an ill-
conditioned signature simplex. The pure signature mean A 1 is less than a standard deviation
away from the closest point in the opposite face.
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4
DATA AVERAGING

Two techniques designed primarily to increase speed of calculation have been examined

theoretically and numerically with simulated data. These are (1) data averaging, reported in

this section, and (2) the use of a simplified estimator, reported in Section 5.

Data averaging can be applied to problems which require an estimate of proportions for a

larger area-say for a section or quarter-section of land, or for the land belonging to a particu-

lar farm. In addition, data averaging may lead, under certain conditions, to a more accurate

estimate of proportions over a wide area than does the pixel-by-pixel estimate. However, data

averaging has no role when we desire to know the contents of the scene on a pixel-by-pixel basis.

4.1. ANALYSIS

Consider any area over which average proportions of given materials are to be estimated

(see Fig. 3). Suppose that there are N resolution elements in the area, and that for each there

is a data (signal) vector yi and a true proportion vector Xi. We want to estimate the overall

proportion vector j- for the whole region from the data vectors yl, y 2 ' " . yN. Then, assum-

ing the pixels are equal in area,

N

Ni= 1

A

Let X be the standard estimator corresponding to a signal y. Sometimes, for clarity, we will
A A

exhibit the functional dependence by the notation X(y). The usual way to estimate X is to find Xi
A

for each pixel, then compute the estimator X of x by

N

i=1

This "point-by-point estimation" of X we call Method 1.

An alternative method for estimating -is to obtain the average y of the signals

N1
and then compute the estimate

A

SX(y)

This procedure is "estimation with averaging," sometimes referred to as Method 2. For larger
A

values of N, the computation of X is faster than the computation of by a factor of about N,
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FIGURE 1. WELL-CONDITIONED SIGNATURE SIMPLEX

FIGURE 2. ILL-CONDITIONED SIGNATURE SIMPLEX

i ,2 3 "

- - ",--Signal yk

FIGURE 3. SCHEMATIC FOR DATA AVERAGING
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since only one proportion estimate is required for Method 2 as opposed to N for Method 1. We

can now compare errors in estimates of X for the two methods.

The basis of comparison is the mean-square error of the estimate given by

2 ^ 12

for Method 1 (point-by-point) estimation, and by

E2 = EII - 112

for Method 2 (estimation with averaging) where E is the expected value operator and II (I

represents the Euclidean norm. For each i, 1 - i _ N let

b. = E(X.) - x.
1 1 1

Then b. is the bias of the estimate X.. Let
1 1

N
b = b.

1
A

Then b is the average bias of the X.. Assuming the y.i are statistically independent, the follow-

ing result is derived in Appendix B:

N

E 2 E Ii - Ei) L2 1 2  (2)
N 2 1

It then follows that

E l I - l 2  11 -61 2  (3)

Now i and E(Xi ) are both proportion vectors; therefore

11.i - E ~i) 1 2 5 2

and it follows from Eq. (2) that

E2 =EI I -E( )I 2  2 (4)

By (3) and (4), the expected mean-square error of the average of the estimates goes to zero

as N goes to infinity if and only if the average bias of i goes to zero; and 1 may not go to 0 as

N increases.

On the other hand, it is also shown in Appendix B that

E2=EI -X _X112
2 N

where
20
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T = max trace M.
i 1

and 3 depends upon A but not on N. Note that this result does not depend upon the equal con-

variance assumption. Thus the expected mean-square error of the proportion estimate for

the average signal goes to zero as N goes to infinity.

Since it is reasonable to expect that the average bias b will normally remain above a fixed
A

level for typical pure signature sets, X would be a better estimator of X than for large N. How

large N should be depends on the pure signature configuration. Some results for this will be

given below.

4.2 NUMERICAL RESULTS

Using simulated multispectral data based on five agricultural crop signatures, numerical
X_ A

tests were conducted to compare the accuracies of X and X. The test set contained about 2000

data points; test areas were of size N = 1, 27, 135, 270, 540. Details of the simulation are de-

scribed in Appendix C.

Estimates of 2 2
Estimates of 1 and E 2 were obtained, with results as a function of N presented in Table 1.

Graphs of these results are presented in Fig. 4. Note that Methods 1 and 2 yield identical estimates for

N = 1. Note also that for smaller value of N > 1, Method 1 gives more accurate results. How-

ever, in Fig. 4, the two curves cross at about N=330 and Method 2 remains more accurate there-

after. This agrees with the theory of Section 4.1. From the graph for Method 1 we can estimate

that the norm-square of the average bias of the estimates X. is about 0.007, the apparent limiting

value.

4.3 DISCUSSION AND CONCLUSIONS

The results of the analysis and of the numerical tests, taken at their face value, are in

agreement with each other and lead to the same conclusion-namely that for N greater than

some threshold value, estimation with averaging should give more accurate results than point-

by-point estimation. The value of N for which this occurs is dependent on the particular sig-

nature set and on the prior distribution of the proportion vectors. However, a word of caution

is in order. This result is based on a highly theoretical situation in which a small, well es-

tablished set of signatures define the statistical distribution of data points assumed to be un-

correlated. In the world of real data we find that there are always alien materials present.

The signal values are not necessarily correlated. Finally, if we attempt to average over a

large area to overcome these problems, we may include too many materials in the averaged

signal; ultimately, no more than n + 1 materials can be included in the signature set, where n

is the number of spectral channels.
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Therefore, the details of when averaging should be used and, if it is used, the question of
how many pixels should be averaged, will have to be worked out by experience with real data.

TABLE 1. MEAN-SQUARE ERROR IN ESTIMATING X. (N = number
of pixels in area represented by -.)

Method N=l N=27 N=135 N=270 N=540

1 (2) 0.2465 0.0145 0.0083 0.0074 .0.0073

2 (X) 0.2465 0.0385 0.0132 0.0075 0.0052
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FIGURE 4. MEAN-SQUARE ERROR IN ESTIMATING-
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5
A SIMPLIFIED PROPORTION ESTIMATOR

In another attempt to improve the speed of proportion estimation, a simplified estimator

was studied. This estimator is described in Section 5.1 and compared with the standard esti-

mator. The simplified estimator is then analyzed with respect to averaging properties. In

Section 5.2, numerical comparisons of the two estimators, based on simulated data, are given

with respect to speed of computation and accuracy.

5.1 DESCRIPTION AND ANALYSIS

In Section 3 the standard proportion estimator was defined as the minimum of

G(X) = Ily - A x 12

over X, subject to the constraints

Xi = 1 (5)

ki -0 andi= I1, . . . , m (6)

where x = ( 1 , 2  . , m)t

In this manner the estimate X of X is obtained via quadratic programming. In the simplified

estimation procedure the minimization problem is solved subject to constraint (5) but not con-

straints (6). Solving the problem without constraints (6) is equivalent to finding the projection

of y onto the linear hull of the signature mean vectors Ai (vertices of the signature simplex).

If this projection falls within the simplex, then constraints (6) are satisfied and the solution X

is the same with or without constraints (6). If this projection falls outside the signature sim-

plex, then the solution will contain negative components. A proportion is then obtained by

setting these negative components equal to zero and normalizing the remaining components.

In order to define precisely the simplified estimator K, the following definitions are nec-

essary. Let S denote the set of all proportion vectors of dimension n. Let SA denote the pure

signature simplex. Then SA is the set of vectors of the form AX where X is in S. Let L be the

linear hull of S. Then L is the set of all vectors of dimension n with component sum equal to

one. Clearly, L contains S. Let LA denote the linear hull of SA ' Then LA is the set of points

of the form A 7 where 77 is in L. For a point 17 in L, let 77+ denote the vector obtained by setting

all negative components of 17 equal to zero. Let p = p(7) denote the sum of the positive compon-

ents of ?7. Note that p > 1 because the sum of all the components of i7 is 1. Now let = 7

Note that 7 is a proportion vector.
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Let Py denote the orthogonal projection of the signal y onto LA, i.e., Py is the unique point

in LA closest to y. Py has a representation

Py = A7

for some 7? in L. This representation is unique for non-degenerate SA. If Xo is the true pro-

portion vector of the pixel represented by the signal y then the estimator Xo of Xo is defined

to be

ko = ?7

The computational advantage of the estimator X over is that X may be .essentially obtained

by a single projection. With regard to accuracy, its desirable properties are obscure. If Py
A A

falls within the signature simplex SA then = A. But in this case, the computation of X using

the ERIM-modified Theil and van de Panne algorithm would be essentially the same as the

computation of i, so that i is not advantageous. When Py is not in SA, A and X may differ con-

siderably. Figures 5(a) and 5(b) show the relationship between X and X for two configurations.

In Fig. 5(a), K = (3/4, 1/4, 0) and1 = (1/2, 1/2, 0). In Figure 5(b), = (1,0,0) and . = (0,1,0),

the maximal difference.

Some properties of k with respect to averaging procedures will now be examined. These

properties are similar to the corresponding averaging properties of the estimator X. Let yi'

1 _ i _ N, denote a signal from a pixel with true proportion vector Xi . The region represented

by the aggregate of the N pixels would then have true proportion vector X given by

N

Here we are assuming pixels of equal size. If we estimate X by averaging the estimates X.
1

from the individual pixels, we obtain the pixel-by-pixel simplified estimator (Method 1).

N

Let

bi = E(ki) - Xi

and let 6 be defined by

N
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,p Py = At

A A /

A 3  A 2"A2

(a) x (3/4, 1/4, 0) and A = (1/2, 1/2, 0)

I Py A

- I

A 2 = AK

3 A

(b) K = (1, 0, 0) and A = (0, 1, 0)

FIGURE 5. GEOMETRIC COMPARISON OF STANDARD AND SIMPLIFIED
ESTIMATORS
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~2
Then b is the average bias of the estimators i, and the mean-square error E1 (assuming as

usual that the yi are statistically independent) is given by

N
~2 = E I7 312 1 112 +b12

N 1

It follows that

EI I- 2l 3 II 2 (8)

Since ki and E(k i ) are both in the simplex S of proportion vectors,
11i - E i 112  2

and it follows from (7) that

2 Ei -' 122 1 12
E1 (9)

By (8) and (9) the expected mean-square error of k goes to zero as N goes to infinity if and

only if norm-square of the average bias of the estimates ki goes to zero.

Now let

- 1
y=N ,Yi

and let X denote the simplified proportion estimate for the signal y and consider X as an esti-

mate of X (Method 2). A proof of the following result is sketched in Appendix B:

~2 - m7
2 N

where m is the number of pure signatures

r = max trace M.
i

1 m

and P depends upon A but not N. Thus the expected mean-square error of the proportion esti-

mate X for the average signal goes to zero as N goes to infinity.

5.2 NUMERICAL RESULTS

Numerical tests were conducted to compare the standard and simplified estimators.

These tests with the simplified estimator corresponded to the tests performed with the stand-

ard estimator reported in Section 4.2. Thus areas of size N=l, 27, 135, 270, 540 were used

and the simplified estimates of X were obtained via Methods 1 and 2. The mean-square error
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of the estimates as a function of N are given in Table 2. For N = 1,X and K coincide, and their

entry in the table is the mean-square error for the simplified estimator for a single data point.

Comparing this value, 0.3224, with the value 0.2465 for the corresponding entry in Table 1, we

can see that for this data, the mean-square error of the simplified estimator is about a third

more than the mean-square error for the standard estimator.

2
Graphs of the results in Fig. 6 show that E2 is going to zero as N increases, as predicted

-2
by the theory. It is not clear from the graph what the limiting value E1 is, but this value of

2 would correspond to the norm-square of the average bias b of the estimates Xi"

For the purpose of comparing the standard and simplified estimator, the graphs of Figs.
2 -2

and 6 are displayed together in Fig. 7. We see that E2 and E2 eventually coincide. This de-

rives from the fact that for large N, the projection of the average signal y falls inside the sig-

nature simplex, and this results in the equality of the standard and simplified estimates.

2 -2 -2 2
When we compare E1 and E1 , we see a surprising result: E1 is actually less than E1 for

larger values of N. We cannot explain the phenomenon. We think it may stem from the par-

ticular simulated data set employed, and we do not have confidence in the generality of this

particular result.

Now let us compare computation time for the simplified and standard estimates. On the

basis of estimating proportion for each of the 2000 simulated data points, the simplified esti-

mation procedure required about two-thirds the time required for the standard estimation

procedure.

5.3 CONCLUSIONS

The standard estimation is more accurate than the simplified estimator for a single pixel.

These two estimators are identical for larger values of N when estimation with averaging

(Method 2) is performed. When X is estimated by Method 1, we found the simplified estimator

superior for larger values of N. The simplified estimator requires about two-thirds the com-

putation time of the standard estimator. We feel that the great drawback of the simplified

estimator is the lack of theoretical underpinnings. On balance, we believe that the simplified

estimator should be shelved for the present and that proportion estimation development should

be continued with the standard estimator.
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TABLE 2. MEAN-SQUARE ERROR IN ESTIMATING T WITH
SIMPLIFIED ESTIMATOR. (N = number of pixels in

area represented by x.)

Method N=1 N=27 N=135 N=270 N=510

1 () 0.3224 0.0128 0.0049 0.0035 0.0027

2 0.3224 0.0395 0.0137 0.0075 0.0052

229
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FIGURE 6. MEAN-SQUARE ERROR IN ESTIMATING- WITH SIMPLIFIED
ESTIMATOR
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FIGURE 7. COMPARISON OF MEAN-SQUARE ERRORS IN ESTIMATING
X WITH STANDARD AND SIMPLIFIED ESTIMATORS
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6
ALIEN OBJECT THRESHOLD SETTING

In Section 3.3 the improved procedures for dealing with alien objects or materials were

described. Alien objects are those objects not represented in the pure signature set. The

alien object test employed a generalization of the chi-square test used in recognition process-

ing. In mixtures processing, a signal y is said to represent a pixel with alien material if

Ily -AX 12 ,2

2
for every proportion vector X. The alien object threshold is Xo, and in this. section we are

concerned with determining how best to set the value of this parameter in a specific situation.

In Section 3.1, numerical tests were performed to determine the optimal alien object threshold

setting.

6.1 NUMERICAL TESTS

The following experiment was performed in order to assess the effect of the alien object

threshold setting on estimation accuracy. Three-thousand simulated multispectral data points

were generated based on five agricultural signatures: bare soil, corn, soybeans, cut alfalfa,

and alfalfa. (The characteristics of the data points are defined in Appendix C.) The data

points were then divided into three sets of 1000 points each. Then each set was processed

using four of the signatures for the pure signature set, to obtain an estimate of the proportions

of these four crops in the region represented by the thousand data points. The point-by-point

standard estimate of the average proportion vector for the region represented by the 1000 data

points was obtained. This vector had four components; thus the crop not in the signature set

played the role of alien material. Then the norm-square of the difference between the region's

estimated proportion vector and the true proportion vector was computed and averaged over

the three regions represented by the three sets of 1000 data points. The result was taken as

an estimate of the mean-square error for the particular alien material and alien object thresh-

old setting chosen. The threshold setting was varied between the values 7 and 37. Graphs of

the results are presented in Fig. 8. The graph corresponding to a particular signature set of

four crops is identified by the crop treated as alien. Thus, corn alien means that the classes

represented in the signature set and used for proportion estimation were bare soil, soybeans,

cut alfalfa, and alfalfa.

In Table 3 we list the optimal alien object threshold for each pure signature set-or,

equivalently, for a particular alien material. We know that 27 is near-optimal for the two

cases: (1) corn alien and (2) alfalfa alien, because a negligible number of data points are re-

jected at this level.
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FIGURE 8. ESTIMATED MEAN-SQUARE ERROR OF PROPORTION
ESTIMATE AS A FUNCTION OF ALIEN MATERIAL AND ALIEN

OBJECT THRESHOLD
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The graphs show that a reasonable alien object threshold setting for all five cases would

be about 15. We did not find any clear relationship between the distance of the alien signature

mean to the corresponding signature set and the optimal threshold value. This may be because

the simulated data points were generated with a flat distribution over the set of proportion

vectors. As a result the average true proportion vector was about (0.25, 0.25, 0.25, 0.25) in

each of the five cases. The geometrical relationship of the alien signature mean to the means

of material in the signature set may distort the optimal threshold that would result if several

different values of X were used. This, we believe, is the reason that two cases in Fig. 8 show

no clear-cut finite optimal value.

6.2 CONCLUSION

For the limited tests conducted, we found a single alien-object threshold setting satisfactory

in all five cases. This result is based on a very limited experiment. However, the procedure

for finding the best threshold setting on simulated data may be used on training sets for real

data-in fact, we do this in the next section. (When there are not enough training data avail-

able, we still don't have a completely satisfactory way to set the alien object threshold.)

TABLE 3. OPTIMAL ALIEN OBJECT
THRESHOLD

Alien Class Optimal Threshold

Bare Soil 12
Corn 27
Soybeans 12
Cut Alfalfa 16
Alfalfa 27
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7
ESTIMATING WHEAT PROPORTIONS FROM ERTS DATA

An exercise was conducted using the mixtures algorithm to determine wheat proportions

in selected regions from ERTS-1 multispectral scanner (MSS) data. The data were collected

over Fayette County, Illinois, on 11 June 1973. Ground truth information was collected as part

of the CITARS (Crop Identification Technology Assessment for Remote Sensing) task, a joint

investigation by the Earth Observations Division (EOD) of the Johnson Space Center, Purdue

University's Laboratory for Applications of Remote Sensing (LARS), and ERIM.

Specifically, the objective of the exercise was to estimate by mixtures processing the pro-

portion of wheat in each of 20 quarter-sections. Results were disappointing in that the rms

error of the estimates was almost 85% of the known proportion of wheat averaged over these

quarter-sections. By comparison, the rms error reported for estimates obtained by conven-

tional recognition processing for the same quarter-sections was about 50% [9].

Tests on the signature set used in mixtures processing showed that the signatures of the

individual materials were very close in a probability sense to the signatures of mixtures of

the other materials. Thus, we should not have expected to obtain very good results. The ill-

conditioned nature of the signature set derives to some extent from the limited number (4) of

the ERTS-1 sensor's spectral bands, and their relatively large width. Also, the time of year

contributed to the low contrast. Nevertheless, results of the exercise indicate that present pro-

portion estimation procedures should be modified for these low-contrast situations.

7.1 DATA FLOW AND SIGNATURE EXTRACTION

Multispectral data flow during processing as well as preliminary data handling steps have

been already described [9]. Procedures for extracting signature statistics from training data

are given in the same document. We will now discuss the quality of signatures obtained and

the procedure for selecting the signature set used in estimating proportions.

Signatures for seven object classes were obtained: wheat, corn, soybeans, clover, trees,

pasture, and water. The number of training data points used for estimating signature param-

eters for each of these crop types is shown in Table 4. Note that only 9 data points were

available for estimating the pasture signature and that 17 points were used in estimating the

clover signature. The last column of the table lists the determinant of the estimated covariance

matrix for each object class. [The square root of the determinant is proportional to the volume

of the unit contour ellipse of the class signature and is a measure of the spread of that signature.

Considerable variation among the estimated signature covariance matrices may thus be expected.]

A training set consisting of 20 quarter-sections was selected in the following fashion: All

of the quarter-sections are in a land segment 5 miles wide by 20 miles long. The 100 sections
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comprising this segment were numbered starting with the top left section (No. 1) and proceed-

ing to the top right (No. 5); the next row starts at 6 on the left and goes to 10 on the right, and

so on. With each of the 20 quarter-sections carrying the same number as the full section to

which it belonged, the 10 odd-numbered quarter-sections in this ordering were then designated

as belonging to the training set.

Since the mixtures algorithm permits, at most, five signatures in the signature set when

four channels of spectral data are available, two signatures were eliminated by the following

method. The distance r of each object class from wheat was computed by geometric signature

analysis and the amount, a, of each of the classes in the 10 training quarter-sections was de-

termined. Then the two object types for which

aO(-r/2)

were least were excluded. Here O(x) is the univariate Gaussian density function. On this

basis the five signatures retained in the signature set represented wheat, corn, soybeans,

clover, and pasture.

7.2 SIGNATURE SET ANALYSIS

Analysis of the signature set retained for mixtures processing showed that the set was

ill-conditioned-that is, some or all of the pure signature means were close, in a probability

sense, to the mean of the signature of some mixture of the other materials. In fact, for this

particular case, all of the pure signature means were close to the mean of the signature of

some mixture of the other four materials. Table 5 quantifies this separation in standard devi-

ation units for each of the materials in the signature set. Our past experience with the mix-

tures algorithm indicates that, for satisfactory results, all the distances determined by signa-

ture set analysis should be about 3 or more.

7.3 SETTING THE ALIEN OBJECT THRESHOLD

The procedure for setting the alien object threshold was to take nine specified values and

then choose that value found to be best for the training data. The nine values initially taken

were all too large, so much lower values were then tried; the best alien object threshold value

for the training data was found to be 2. This value was used for processing all 20 training

quarter-sections.

Only five of the ten training quarter-sections were employed for setting the alien object

threshold-namely, those numbered 25, 32, 44, 83, 86. The training quarter-sections num-

bered 7, 19, 72, 73 were excluded because they contained less than 10% wheat, which we felt

would bias the threshold setting to the low side. Training quarter-section No. 56 was excluded

because the ground truth at hand was of questionable validity.
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TABLE 4. NUMBER OF DATA POINTS USED IN ESTIMATING
SIGNATURES AND DETERMINANTS OF ESTIMATED

COVARIANCE MATRICES

Number of Determinant of Estimated
Object Class Data Points Signature Covariance Matrix

Wheat 47 265.5
Corn 88 12934.3
Soybeans 116 750.4
Clover 17 47.4
Trees 180 3.7
Pasture 9 3.6
Water 120 6.5

TABLE 5. RESULTS OF SIGNATURE SET ANALYSIS.
(Distance is measured from mean of the material

signature to the mean of the mixture signature
which is closest to it in a probability sense.)

Distance
Material (Standard Deviation Units)

Wheat 0.22
Corn 0.31
Soybeans 0.24
Clover 0.41
Pasture 0.17
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7.4 MIXTURES PROCESSING RESULTS

Table 6 gives the results obtained in using mixtures processing to estimate the proportion

of wheat for each of the 20 quarter-sections. For comparative purposes, results of conventional

ERIM recognition processing [9] are included. With mixtures processing, the rms error for

the estimated wheat percent was about 0.85 of the average wheat percent over the 20 quarter-

sections-not good. Since the corresponding rms error was about 0.6 for recognition process-

ing, it is clear that recognition processing outperformed mixtures processing.

7.5 CONCLUSIONS

The fact that mixtures processing gave poorer results than recognition processing in this

exercise indicates that mixtures processing techniques require further development for low-

contrast situations.

The ill-conditioned nature of the signature set, as revealed by signature set analysis, indi-

cates that the spectral information gathered during certain times of the year by the four ERTS-1

channels is insufficient to disperse the signatures of materials enough to permit successful

mixtures processing without modifying present procedures.
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TABLE 6. RESULTS OF ESTIMATING WHEAT PROPORTIONS IN 20 QUARTER-
SECTIONS BY MIXTURES PROCESSING AND CONVENTIONAL

RECOGNITION PROCESSING

Quarter-Section Ground Truth Estimated % Wheat Estimated % Wheat
(ERIM No.) Wheat % Mixtures Processing Recognition Processing

7 0 20.3 13.0
18 8.3 11.1 14.0
19 4.4 4.1 2.1
21 28.5 12.5 11.8
25 21.9 19.8 12.4

28 22.9 16.2 21.7
32 15.5 8.0 8.5
40 2.8 11.9 3.0
44 18.4 21.3 18.8
46 0 14.2 17.3

56 26.6 10.0 10.7
64 20.5 4.6 10.9
72 9.3 12.2 14.9
73 0 11.5 15.2
75 0 9.1 8.0

82 22.4 15.7 14.0
83 17.6 10.3 15.3
84 22.5 25.0 35.2
86 12.5 23.0 24.2

100 flooded 18.0 --
(0)

Average 12.9 13.8 13.9
RMS Error 11.0 7.9
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8
CONCLUSIONS AND RECOMMENDATIONS

The multispectral data processing method for estimating proportions of objects and ma-

terials appearing within the instantaneous field of view of a sensor system has been improved

-especially with regard to the computational speed of the basic algorithm and the associated

alien object detection scheme.

Although the simplified proportion estimator did not prove adequate, results obtained in

tests of these procedures on more or less artificial data sets indicate their potential useful-

ness. Averaging schemes to further increase processing speeds appear to be advantageous

under certain circumstances.

Success with applications of proportion estimation techniques on ERTS data have been re-

ported [4, 5]. However, during certain times of the year a low-contrast situation may occur.

In such situations, we feel some modification of the techniques will improve performance. One

such modification would be based on the assumption that any pixel contains a very limited

number of materials, say not more than two or three. In addition, the estimated proportion of

a material in a pixel should perhaps be required to have some minimum value before it is

counted.

We believe that advances in proportion estimation now require experimentation with real

data sets accompanied by adequate associated ground truth information.
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Appendix A
DETAILS OF COMPUTATIONAL IMPROVEMENTS

The present adaptation of the Method of Theil and van de Panne is faster than the original

version by a factor of 14. This progress is attributable to (1) a faster machine, (2) increased

computer memory that obviates recomputation of certain quantities, and (3) discovery of pro-

jection theorems that permit computational shortcuts. These newer theorems-which have

enabled a number of improvements to be made in the estimation algorithm, the alien object

test, and geometric signature analysis-are detailed below.

A.1 THEOREMS LEADING TO IMPROVEMENT
A TA

The Method of Theil and van de Panne computes the closest point y = A X(y) to y in the

signature simplex by computing certain projections of y onto the simplex and its subsimplices.

Though it does not need to compute every such projection, the method starts by projecting y

onto the hyperplane determined by the signature mean vectors Al, . . . , Am; it then projects

y onto hyperplanes of succeedingly lower dimensions. The projection y* of y onto the hyper-

plane determined by A 1 , . .. , Am is computed by obtaining X = (X1, . . X. , m) from the equa-

tion

r11 ' lm 1" - 1-

(A-l)

r ml ... rmm 1 Xm  g

1 ... 1 0 A 1

where .. = AJTA. and g = A T y . Then y* = AT . To project y onto a lower-dimensional hyper-
1] 1 J i.

plane determined by some but not all of the Ai, delete the rows and columns corresponding to

the A. not included, and solve the reduced system of equations for the i.. If the projection

hyperplane does not include Aj, j. must be omitted from the equation and set to zero.

All these projections would ordinarily require a great deal of computation, but the theorems

given below afford some savings in effort.

Theorem 1. The square of the distance from y to y* is yT y- Tg -_ .

Proof. D2 , the squared distance, = (y - y*)T(y - y*)

=(y-AT X) T(y - AT)=y yTy 2XTAy+ XTAAT X.

Let J be a column vector of m l's. Equation (A.1) implies

FX + AJ = g

- In this appendix, ki denotes the i-th component of the vector A and the A i are row vectors
forming rows of the matrix A.
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In other words,

AATX = Ay - AJ

Substituting in the third term of D2 , D2 becomes

y - 2X TAy + T(Ay - AJ) = yT _ TAy - AXTJ = yy - g - A

because XTj = 1. Q.E.D.

This theorem provides a convenient way of computing the "out-of-plane distance" in the

alien object test described.

Let X' be the X vector that would be obtained by deleting a vertex Ak from the set of vertices

considered. The next theorem shows a relationship between X and '.

Let r T and C = r

Because r+ is symmetrical, C is symmetrical. The solution to Eq. (A-i) is

[ C (A-2)
Cik

Theorem 2. . = - Ck
1 Ckk k

= - C+k
C k

where the subscript + stands for "m + 1".

Proof. Let C' be the result of inverting a r+ that is missing the k-th row and column. It is a

matrix theorem that

C.. = ikCjk
13 1j Ckk

This lemma can be verified by multiplying row i of C' by column h of r+ '. The result is

Sj'+jh - Ckk +jh = ij +jh Ckk Cik r+jh
jhk ij(C

The term for j = k can be included because the factor in parentheses is 0 when j = k.
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ECjk +jh = 0 because Cjk = Ckj, for k * h, and C is the inverse of F+. Thus the second term

drops out. The first term is 1 or 0 for h equal or not equal to i, proving the lemma.

Define gm+l to be 1. By Eq. (A-2)

m+l

Xh = Cij j
j=1

j:k

with the k-th term missing. Therefore

m+l CikC g

= _ -Ckk = Lj

with the k-th term included because, as was seen, it is 0. This equation implies

m+l Cik m+1 C

Cijg - Cjkgj = ki -  k k Q .E.D.

j=1 j=1

The proof of the theorem for A is analogous.

Because Cik and Ckk depend on the A i values but not on y, they are constants that can be

precomputed and stored; Theorem 2 provides a quick way to proceed from X to X', thus making

possible a considerable speedup in the Thiel and van de Panne method.

Theorem 3. The squared distance d 2 from y* to the k-th face of the simplex is

2
-k - A

Ckk

By the k-th face of the simplex is meant the plane through all the vertices Ai except Ak -

Proof. By Theorem 1,

d 2  *Ty - XTg,

y*Ty*= XTAA T because y* = A A. Let us define AX = 0 to keep X' a convenient dimension.

g' = A'y* where A' is A with the k-th row missing. But let us define g' = Aky* to make g' the

same dimension as X' and give it the convenient definition Ay*. The value of X' g' is unchanged

by this maneuvering.

g' = Ay* = AA T
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Thus

d2 = xTAATX - 'TAAT - a' = ( - ') TAATx - A

Now AA T = g - aJ by Eq. (A-1). By Theorem 2,

Cik

Ckk k

and

+k

kk

so

d2 =k (C (g - AJ)+ C+k A Ciki + C+k A Cik

Cik = 0 because it is the k-th row of C times the last column of r . Cikgi + C+k = Xk'

by Eq. (A-2), hence

2  k2
d2 - A Q.E.D.

Ckk

If Xk is negative, y* is on the outside of the simplex, i.e., the k-th face separates y* from

the simplex. If every Xk is non-negative, y* is in the simplex. We therefore define a lower

bound 6 of the distance from y* to the simplex as follows.

62 = mm - A if some xk < 0 =0 if all Xk's 0
Xk<0 kk

6 is a lower bound because the nearest point on the simplex to a point outside it has to be on some

face, say the k-th face of the simplex. The distance from y* to that point ? the distance from y*

to that face _ 6.

Corollary 4. A lower bound for the square of the distance from y to the simplex is

y -Tg- A+62

Proof. Let s be any point on the simplex. Because y-y* is orthogonal to y* -s, the squared

distance from y to s is the squared distance from y to y*, which by Theorem 1 is y Ty -X g - A,

plus the squared distance from y* to s, which has been shown to have the lower bound 6 .

Q.E.D.
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The next theorem shows conditions under which the A term in the distance expressions

can be ignored.

Theorem 5. When either y or the origin of the space is in the plane through the vertices,

S= 0.

Proof. If y is in the plane of the simplex, y = X k A k

k

gi = Ai(E kAk T =  k FXik
k

m m
=C + Ci+i = C ++ + Ci+ kr ik

i= i=1 k

Reversing the order of summation,

m m
A =C+++ Xk ECi+ ik

k=1 i=1

m+1
C is symmetric, and, C Ci+rik is the inner product of the m+1 row of C with the k-th row

i=l

of r . Hence when the last term of the sum is deleted
+

m
Si+ik= -C++

i=1

S=C+++ Xk(-C) = 0

because the X's sum to 1, and the first part of the theorem is proved.

To prove the second part of the theorem, we draw a distinction between the "mixture space,"

which is all points of the form

XA 1 + .. +mA mA

where X1 + ... + m = 1, though not necessarily all positive, and the "vector space" spanned

by the vectors Al' . .. Am. The mixture space is what we have previously called "the plane

through the vertices."

We will first show that when the origin is in the mixture space, the mixture space and the

vector space are identical. Every mixture is a linear combination of the basis vectors and

hence is in the vector space. It remains to show that every point in the vector space is a mix-

ture. Let the origin be the mixture AlA1 + . . . + mAm and let V = C1A 1 + . . . + C Am be

an arbitrary point in the vector space. Let d be C 1 + . . . + Cm.
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V = + .+CA +(1 - d)(lA1 +  . + XAm)m=CA1 +. ••+C m A " mm

because the second term is 0.

V = [C 1 + (1 - d)1]A1 +. • . + [Cm + (1 - d)Xm]A m

The coordinates now add up to 1 and V is therefore a mixture.

Now let y be an arbitrary point in the whole space. y = y* + y' where y* is in the mixture

space and y' is orthogonal to it.

y = (XkAk)T + y

gi = Ay = Ai kAk + AY' =  kik

The second term drops out because y' is orthogonal to every vector in the mixture space. The

remainder of the proof is the same as for the first part of the theorem. Q.E.D.

Corollary 6. The distance from a vertex Ak to the opposite face of the simplex is 1/-kk'.

Proof. By Theorem r, the squared distance from Ak to the k-th face is

Xk2

Ckk

Xk is 1, and by Theorem 5, A = 0. Hence the corollary. Q.E.D.

The application and usefulness of these theorems are illustrated in the remainder of this

appendix.

A.2 DESCRIPTION OF THE ALGORITHM

The quadratic programming problem derived from maximum likelihood and the mixtures

model is solved by an adaptation of the Method of Theil and van de Panne. Since our previous

report, certain improvements have been made in the algorithm. For the sake of completeness,

our original version [2] of Theil and van de Panne is outlined here. A description is then given

for the improvements which have permitted reduction of computation time.

Let {h} denote the set consisting of the integer h, and let S be a subset of the index set

{1, a, . . . , m}. Let the A. be the vertices of the (transformed) signature simplex. Let HS

be the hyperplane formed by those B. so that j g S. Let z S be the projection of z onto HS

S j
Then there exists a vector p so that

zS X A.
j=1 J
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1s=0 forj ES

S SHowever, XS may not be a proportion vector, since there may be j so that XS < 0. The set of

such j is called the violation set V(S) of S. Let 9 denote the empty set. Obviously, if V(S) = 4,
then XS is a proportion vector.

As noted before, the Theil and van de Panne method finds the closest point in the simplex

to z by computing projections of z onto various hyperplanes HS , in such a manner that not all

such projections have to be made. Let be the desired proportion vector. Then there exists
A A S
S such that X = X , and the following rules (theorems) apply:

(1) If V(4) : 4, there is some h E V(4) such that h E S.
A A

(2) If V(S) 4, then SCS only if there is at least one hE V(S) so that hE S.

(3) For any S such that V(S) = 4, XS is the desired proportion vector only if h E V(S - {h})

for all h E S

Given these rules, it is possible to define the algorithm in detail.

The Theil and van de Panne method is divided into, at most, m stages. In stage k, the sets

Sk all have exactly k elements. The algorithm proceeds as follows:

Stage 0: Compute X0. If V(4) = 4, then X9 is the desired proportion vector and the algo-
A

rithm terminates. Otherwise, S # q. Proceed to Stage 1.
S1

Stage 1: Using rule (1) above, consider all S1 = {h} so that h E V(4). Compute 1 and

SI
V(S 1) for all such S 1. If for any S1, V(S 1 ) = 4, apply rule (3) to determine whether X is the

desired solution. If it is, the algorithm terminates. If not, S1 is removed from the collection

of sets for Stage 1.

Stage k: Using rule (2), construct from the remaining sets Skl, the sets Sk for phase k

by adding to each Sk_1 an element of V(Skl) to obtain one or more Sk from each Sk-_ . Elimi-
Sk

nate duplicate Sk sets as they occur. As in phase 1, compute X and V(Sk) for each Sk. Using

SkS
rule (3), stop if a solution X is found. As before, remove any set Sk sothat V(Sk) = 4 and k is not

the solution. If necessary, proceed to phase k+l.

In the improved Theil and van de Panne the stages are renumbered, so that "stage" cor-

responds to the number of vertices determining the projection hyperplane -rather than the
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number of them omitted from this determination. The "unconstrained projection" is deter-

mined at Stage m, which is still done first.

One major improvement takes advantage of the larger memory of the IBM 7094: Inverses

of F and its required submatrices are all computed and stored before the start of the print-

by-print estimation of proportions. Thus, a matrix inverse need no longer be computed for

every projection. The X's at Stage k - 1 can be computed from one of.these inverses and the

corresponding X at Stage k, by Theorem 2. These two considerations make for savings in

computation time.

The theorems presented above also provide for some simplification in geometric signature

analysis (Theorem 6) and the alien object test (Theorems 1, 3, and 6).

The present version of Program MIXMAP was written for the IBM 7094. An explanation

of this program is given below. This includes the present computational procedures for geo-

metric signature analysis and the alien object test.

A.3 A DETAILED EXPLANATION OF THE PROGRAM

In Step 1, the Boolean variable FIRST is set = 1B before the statement to read the control

data. In Step 2, a long conditional branch starting at "WHENEVER FIRST" reads signatures,

makes transformations, and calculates inverses of submatrices of GAMMA. In this loop,

FIRST is set equal to OB. Thus, the branch is entered after the first PROCESS input following

control input and at no other time.

The entry TRUBL is usually called in POINT modules in case of difficulty. It calls

SYSTEM if ITEST = 0 and otherwise calls ERROR, producing an octal dump. In MIXMAP, the

function name variable TRUB is set equal to TRUBL., and then TRUB is called in various con-

tingencies. The reason for this roundabout procedure is that if an unexplained bug appears in

the program, you can include after the statement "TRUB=TRUBL." a statement "WHENEVER

ITEST.G.1, ERROR2." and get a decimal dump to help find what's wrong. A decimal dump

could, in that case, be forced by giving NSIG too large a value in the control input. A binary

deck for XDUMP is also needed.

The transformations made in the "WHENEVER FIRST" branch of Step 2 are as follows:

The vertices AA(NSIG by ND) and the covariance matrices MM(NSIG by ND by ND) are

read by READMX. ND is the number of channels on the data tape, presumed to agree with the

number of channels in the signature decks.

The L5 loop forms a new vertex matrix A and cumulates ABAR, the negative of the average

vertex, and MBAR, the average covariance matrix, using only the subset of channels chosen.

ABAR is then added to each vertex because the new origin of the space is going to be the average
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vertex. There are two reasons for making this translation. One is to reduce A to 0, as shown

in Theorem 6, so that A does not have to be calculated and can be left out of the in-plane and

out-of-plane distance formulas. The other reason is to ensure an easily invertible GAMMA

matrix.

MXSCL. (FSIG, ABAR, ABAR, NX) multiplies the vector ABAR (1) . . ABAR(NX) by the

scalar FSIG, = 1./NSIG, and stores the results in ABAR.

A covariance-removing transformation y = Px is calculated as follows. Let M be the

covariance matrix of x. It is a theorem that the covariance matrix of y is PMP

Proof. Cov y = yyT- _y T

where "C" stands for "expectation of."

syyT = CysyT = &PxxTPT - Pxx TP T

P is a constant and comes outside the expectation operator. So

cov y = P(ExxT)p T - PExx P T = P(CxxT - Exx )P T = PMPT Q.E.D.

The problem is to find P such that

TPMP = I

M = PT-1

M-1 _ pTp

because the inverse of a product is the product of the inverses in reverse order. Thus P is

found by inverting M, making the Cholesky decomposition

M-1 = p pT

and then transposing P.

In the program, MBAR is taken as the best estimate of M, then inverted by GJR with the

result stored in MBAR, and then subjected to the Cholesky decomposition subroutine LLT with

the result stored in MBAR. Because the result of LLT is a lower triangular matrix, all ele-

ments above the diagonal are zeroed and removed. The transpose of MBAR, an upper tri-

angular matrix, is the transformation to apply to the data vector X.

However, to save time in transforming X, the multiplications by zero are omitted. In the

double loop early in PROMIX, the point-processing internal function, the last value of y,

namely Y(NX) is calculated first. X(NX) is the floating equivalent of the input integer

DATUM(NX) and Y is the initialvalue of Y plus X(NX) times the (NX,NX) value of the transposed

MBAR, now called P. Y(NX-1) depends on X(NX), X(NX-1) and two values of P. Doing the loop
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backwards this way allows the X's to be calculated as they are used. The initial values of Y

are ABAR, the negative of the average vertex, thus effecting a translation to put the origin at the

average vertex. The P's are referenced by the linear subscript K to avoid the time to compute a

double subscript. Thus P is stored, not in matrix form, but in the unusual linear form required

by the backwards loop in PROMIX.

The vertices A and the average vertex ABAR must also undergo the same covariance-

removing transformation. Any column vector Z would be transformed PZ, but if Z were a row

vector, it would be transformed ZPT. The vertices are stored in A as row vectors and ABAR

can be considered a row vector. Thus A and ABAR are transformed by multiplying them by

MBAR, which has been reduced to PT

The GAMMA matrix is computed next. GAMMA(I,J) is the inner product of the I-th and

J-th rows of A. A column of 1's and a row of 1's are added, and GAMMA(NSIG+1, NSIG+1) is

defined as 0. We have found the GAMMA matrix often poorly conditioned, that is, attempted

inversion of GAMMA led to trouble. The problem was solved by making, in effect, a change

of scale

new Y = old Y/V

where V is the square root of the largest element W of GAMMA in absolute value. The effect

on GAMMA is to divide the first NSIG rows and columns by W, with the result that the largest

element is now 1. A, ABAR, and P are also divided by V, so that the transformation takes no

time at the point-processing stage.

The L20 loop goes through every subset of the vertices, computing and storing the inverse

of the corresponding submatrix of GAMMA. A subset is identified by an integer ISUB which,

when looked at in binary form, has a 1 corresponding to every retained vertex. A subset of

the first, second, and fifth vertex, from right to left, has the number 10011 in binary, which is

the same as 19 in decimal. Every subset of five vertices can be represented as an integer

from 0 to 31. The L20 loop eliminates subsets of size 0 and 1 because the corresponding in-

verses are not needed for the projections.

Within the L20 loop, the subset is expanded into the vector ICOL, so that ICOL(I) = 1 if the

vertex is present and 0 otherwise. The same vector is also called BCOL so that it can be

treated as a Boolean variable as well as an integer. The sum of the vector is the number of

vertices in the subset, and is stored in ICOL(O). This number plus 1 is called ICOL1 and is

the row length of the corresponding submatrix of GAMMA. It is one more because of the

border of l's. ICOL(NSIG+1) is kept equal to 1 to indicate that this border is always part of

the subset. The rows and columns of GAMMA are picked out where ICOL(I) = 1 and stored in

C(H+l) . . . C(H+ICOL1*ICOL1). The inverse is then computed using subroutine GJR and

stored in the same place. The index H starts at 0 and after every trip through the loop it is
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incremented by ICOL*ICOL1. The reason it is not incremented by ICOLI 2 is that the last row
of the inverse is not used in calculating the projections and therefore does not have to be
saved.

To retrieve the inverses that have been computed and stored sequentially in the C vector,
a pointer CLOC(ISUB) is saved. Logically, the starting index H should be saved by CLOC. But
H - ICOLI is saved instead, so that the zero-th element of the k-th row of the inverse is the
simple expression

C(CLOC(ISUB) + K*ICOL1)

The distance from each vertex to the opposite face can now be obtained from the inverse
C of the subset NSUB, the one that includes all the vertices. By Theorem 4, this distance
D(K) is 1/~ K K for each vertex K. To restore it to the original standard deviation units, it is
multiplied by V and printed out as DIST(K). The index of CKK is

CLOC(NSUB) + K*(NSIG+1) + K

which reduces to

CLOC(NSUB) + K*(NSIG+2)

DMIN, the smallest of these distances, is a measure of how poor the estimation of proportions
is likely to be. It has been stated that if DMIN were 0, the estimates would be totally ambiguous.
If DMIN for a certain K were near 0, then small chance fluctuations in X(K) would cause wild'
fluctuations in the mixture estimates. The program limit, MINDIS, has a default value of 0.5.
Many users, however, may want a more stringent limit, and require, for example, that all
vertices be at least one standard deviation away from the opposite face. Then they would set
MINDIS = 1 in the control input. Any DMIN less than MINDIS causes the program to stop.

Some Boolean switches are precalculated to speed up the point-processing. BAL means
"make the alien object test," BOUT means "compute the out-of-plane distance," BAV means
"keep a cumulative sum of the data points" so that mixture estimates can be obtained for the
average data point, NOMIX means "do not compute mixture estimates point by point," NOXAL
means "compute neither mixture estimates nor alien object tests," and ITEST2 and ITEST3
signal a debugging printout. The average point AVEPT (an integer variable), PRO (the cumu-
lative proportion vector), ALNO (the number of alien objects), and HNO (the number of non-
alien objects) are zeroed prior to point-processing.

The point-processing routine is the internal function PROMIX. "WHENEVER NOXAL,
TRANSFER TO UPDATE" is used because if there are neither mixture estimates nor alien
object tests to calculate, all that remains is to update AVEPT and HNO and return.
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The procedure for getting Y has already been described. The floating point equivalent of

the integer data vector DATUM is stored in X. Y is computed with the 1/V transformation

built into P, and a translation of coordinates to move the origin to the average vertex is ef-

fected. The vector G is calculated. G(K) is the inner product of the K-th vertex with Y.

The initial X values are calculated -that is, the X's of the projection onto the vertex

space. XK is just the inner product of the K-th row of C1 , the inverse of GAMMA, with G. If

all the X's are positive, the estimation is complete, and we can transfer to OUT. ICOL, L,

SETL and STM are given values first, because these variables are used in the section of pro-

gram starting with OUT.

In the L110 loop, MINL is computed to be mmin LAM(K)*D(K)} or 0, whichever is less.
K 2

D(K), we remember, is 1/gK. Thus by Theorems 3 and 6, MINL is the square of the in-

plane distance for the alien object test. The out-of-plane distance squared is, by Theorems 1

and 6, the inner product of Y with itself minus the inner product of LAM with G. D2 is the

sum of the two squared distances unless no out-of-plane distance is calculated, in which case

it is only the square of the in-plane distance.

Theoretically, one would take the square root of D2 and compare it with ALSIG, which is

the distance in standard deviations Y has to be from the simplex to be considered alien. F

is actually a lower bound for the distance. The out-of-plane distance is exact, but the in-plane

distance is the largest distance from the point to a face that separates the simplex from the

point, and is therefore a lower bound for the true in-plane distance. Thus, if 2 > ALSIG,

then the true distance > ALSIG, the point is alien, and the mixture estimates need not be com-

puted. If N52 < ALSIG, then proportions can be calculated, a true distance obtained, and the

test reapplied. Thus the alien points, and only they, are rejected.' In practice, a precomputed

value TEST=ALSIG 2 /W is compared with D2 to allow for the 1/V transformation and to avoid

taking the square root.

When a point fails the alien object test, the alien object counter is updated, DATUM(NSIG+2)

is set = 1 (indicating the point is alien), DATUM(NSIG+1) is set = D2, and DATUM(l) . . .

DATUM(NSIG) are given the conventional value 7778.

When a point passes the alien object test and the option of only calculating mixture esti-

mates from the average point has been selected, then there is nothing left to do but transfer to

UPDATE, where the average point and the good point counter are updated and the function re-

turns.

The two-page TVLOOP carries out the Thiel and van de Panne procedure with a few modi-

fications. The loop passes in stages from NSIG to 2. At each stage ST, it is assumed that the

X's, namely LAM(J), have been computed and stored sequentially, and the action at stage ST is
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to compute the X's for the next lower stage, and while doing that to test signs to see if all X's

are positive. If so, the optimality test is performed, and if this test succeeds, then the esti-

mation procedure is over.

X values from only two stages need to be kept in storage: those at stage ST that are being

referenced, and those at the next lower stage that are being computed. The LAM array where

these X's are stored is in two halves. The X's computed for stage NSIG before entering the

TVLOOP are stored starting at LAM(O) while those computed at stage NSIG for stage NSIG-1

are stored starting at LAM(350). After stage NSIG has been completed, and all X's computed

for stage NSIG-1 (and have been tested and found wanting) then the stage NSIG X's are no longer

needed and at stage NSIG-1, the X's for stage NSIG-2 are computed and stored starting at

LAM(O).

At stage ST the sets of X's that have been computed are gone through using the index J.

J starts at J1, which is initially 0 and is subtracted from 350 after every stage. Thus J1 alter-

nates between 0 and 350. Preceding each set of X's in the LAM vector is a word giving the

subset to which the X's refer. This word is given the integer name SET(J) and made equivalent

to the floating point array LAM. Thus, at the outset SET(O) = NSUB and the initial X's are stored

in LAM(1) .. . LAM(NSIG).

The JLOOP going through the sets of X's is almost as big as the TVLOOP. The increment

is by ST+1 to allow for the defining subset SET(J) as well as the ST X's stored compactly, with-

out gaps. The subset is expanded into ICOL(1) . . . ICOL(NSIG), where ICOL(N) = 1 if the N-th

vertex is present in the subset, and 0 otherwise.

Within the JLOOP (and almost as big) is the KLOOP, going through the XK's for K =

1 . . . ST. Actually the loop goes for N = 1 . . . NSIG and only executes when ICOL(N) = 1, at

which point K is incremented. In this way, both the index K of the X's, which are stored com-

pactly, and the index N of the G vector, which is not, are available for use in the KLOOP.

We are looking within the KLOOP at a value of N for which ICOL(N) = 1 (i.e., BCOL(N) =

1B). SETL is the original subset SETJ with column N zeroed. This is accomplished by bit-

wise intersection of SETJ with COL(N), where COL is an integer vector 1, 2, 4, 8, 16, . . . ,

which is in binary form, 00001, 00010, 00100, 01000, etc. The sign of XK is tested. If it is

negative, then the Thiel and van de Panne procedure designates, SETL as a possible subset on

which the nearest point to Y might be found. Therefore X's are computed for SETL, using

Theorem 2 and the inverse of the submatrix of GAMMA located at CLOC(SETJ).* The X's

are stored by the index L in the half of the LAM array not used by J. This is accomplished

*Theorem 2 states that new Xi = old h i - Cik * (XK/CKK), where it is the K-th vertex that

has been deleted.
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by starting L at 350-JI outside the JLOOP. SET(L) is given the value SETL, and the new X's

are stored in LAM(L=l) . . . LAM(L+ST-1). Then L is incremented by ST.

If the sign of K is not negative, then it appears that subset SETL need no longer be con-

sidered; if any subset of SETJ contains the nearest point to Y, then that subset will be found in

one of the SETL's corresponding to a negative X. Thus as far as succeeding subsets of X at

stage ST are concerned, SETL is done and need not be looked at again. Either it was a possi-

ble subset and X's were calculated for it, or it was a subset thrown out because of correspond-

ing to a positive X. Thus before the test of the sign of XK, it is recorded that SETL is by-

passed by setting DONE(SETL)=IB. The DONE array starts out all zero. In every subsequent

pass through the KLOOP, when DONE(SETL) is found to be 1B, then that pass through the

KLOOP is bypassed.

The new X's are tested for sign as they are computed. If all are positive then the opti-

mality test is performed. This consists of going through the empty columns I of SETL (loop

L120), forming SETI by adding column I to SETL, locating the inverse matrix C corresponding

to SETI, and then computing XI directly as the inner product of the NK-th row of the inverse

with G. NK is found by counting the l's of SETI from right to left and stopping after the 1 in

column I. It is needed because the inverse is stored compactly. Whenever XI > 0, the test has

failed and a transfer to FAIL is made. If loop L120 is completed without failure, then the last

X's computed define the nearest point on the simplex to Y and a transfer to OUT is made.

When a subset SETL fails the optimality test, then the point on SETL nearest to Y has

been found and it is not optimal. That means that neither SETL nor any of its subsets can be

optimal, so we might as well record them all as being done. The section of code from FAIL

to the END OF CONDITIONAL following L125 does this job. The method is to form all subsets

of SETL consisting of 1 vertex each, and then combine them in all possible ways, recording

DONE=1B for each combination. (The best way to understand this section of code is to work

it through with an example subset.)

The TVLOOP finishes with ST=2 when X's for subsets of size 1 are calculated. According

to theory, some subset must have had positive X's and passed the optimality test, because

there is always some point on the simplex that is nearest to Y. The program allows for the

possibility that because of roundoff or a program bug, no optimal subset can be found. A mes-

sage is then printed giving the line and point number so that the point can be examined later.

The point is counted as alien. If ITEST ? 2, the run ends there with a dump. (Occurrences of

this message would be of interest to the authors.)

To minimize the possibility that no subset will be found optimal, the tests of sign are

made not with zero but very small numbers: Z = 0.000001 and ZM = -0.0000005. A set of X's

is considered all positive if they are all >ZM rather than all >0. To fail the optimality test,

X. has to be >Z rather than >0.
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The section of code from OUT up to STEP(5) describes the action taken after the optimal

subset has been found. The most recently calculated set of X's, which are stored compactly,

are spaced out and stored in the vector PROP with zeroes stored in the spots corresponding

to the missing vertices. The true distance squared, _(yi iAi )2 , is calculated and com-

pared with TEST to see for sure whether the point is alien. (The alien object test represents a

screening operation. Every point failing the test is alien, but some points passing the test

will also be alien.) If so, the alien object counter ALNO is updated and DATUM(NSIG+2) is

set = 1.

If the point passes this second alien object test, the good point counter HNO is updated

and DATUM(NSIG+2) is set = 0. If a mixture estimate will be made from the average data

point, then the cumulative sum of data points AVEPT(1) ...... AVEPT(NX) is updated.

The cumulative sum of mixture estimates PRO(1) ...... PRO(NSIG) is updated. The squared

distance is converted to standard deviation units by multiplying by W and then scaled into the

range 0 . . . 511 by multiplying by 5. The last multiplication is done first in Step 2 resulting

in a factor W5. The number of output channels NX is set = NSIG+2. The point-processing

routine PROMIX has now completed its work so it returns.

In Step 5, the branch of the MIXMAP module called after the points of the requested rec-

tangle have been processed, the total number of points, the number HNO of good points, and

ALNO of alien points, and the time to process the points are printed. If mixture estimates

have been calculated, then the sum vector PRO of the mixture estimates is divided by the

number of good points and the result stored in the vector PROP. Internal function PRTMIX is

called to print the estimates.

If mixture estimates based on an average of the data points have been requested, then the

sum vector AVEPT of the data points is divided by the number of good points, converted to an

integer and stored in DATUM. We need now only call PROMIX to get, in the vector PROP,
the mixture estimates based on the average data point. We must first be sure to turn off the

alien object test, the average point cumulation, and the no-mixture-estimate bypass. The

distance from the average point to the simplex in standard deviation units is computed by

taking the square root of DIST*W and is then printed.
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Appendix B
PROOFS OF THEOREMS RELATING TO AVERAGING PROCEDURES

The purpose of this appendix is to derive results for use in Section 4 on averaging pro-

cedures with the standard estimator, and/or in Section 5.1 on averaging procedures with the

simplified proportion estimator.

We will assume the positive integers m and n are fixed with m ! n + 1; here, m represents

the number of pure signatures and n represents the number of spectral channels. S denotes the

fundamental m-1 simplex, i.e., the set of all points in the positive octant of Euclidean m space

Cm , with components which sum to one. Equivalently, S is the convex hull of the unit vectors.

Material i of the m materials is assumed to have a signature with mean Ai and covariance

matrix M.. A will denote the matrix which has A. for its i-th column. Let X be a column vec-
1 1

tor representing a mixture of materials, i.e., the j-th component Xj of X is the proportion of

material j, 1 _ j = m. It is clear that X is in S. Such a vector is termed a proportion vector.

The ERIM model for signatures of mixtures states that the mean AX and covariance matrices

MX of mixture of materials with proportion vector X are given by:

Ax = A

M = - Mj j

j=1

Let y denote a signal obtained from a pixel containing materials with associated true proportion
A

vector Xo (unknown). The standard estimator Xo of xo is defined as follows. The set of points

AX Xin S

form a simplex SA which is called the signature simplex. Let Z be the point in SA which is

closest (in the Euclidean metric) to y. Then Z can be represented as

AZ = AX

where o is a proportion vector. X is taken to be an estimate of the true proportion vector

X . 0 is unique if the signature simplex is nondegenerate, i.e., if SA has positive (m-1)-di-

mensional volume. We will always assume this condition is satisfied. If the pure signatures

are Gaussian and their covariance matrices are equal, then after an appropriate preprocessing

transformation of the pure signatures and data points, Xo is the maximum likelihood estimate

of .

Let us consider the following situation. Suppose there are N data points yi, 1 _ i 5 N, each

representing a pixel with true proportion vector Xi . The region represented by the aggregate

of the N pixels would then have true proportion X given by
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1
N= Zxi

i=l

Here we are assuming pixels of equal size. One may estimate a proportion vector X. for
A1each i-th pixel with signal yi. Then the average of these estimates Xi given by

N

1

may be taken as an estimate of X. The mean square error of the estimate is. then given by

where E is the expected value operator and II II represents the Euclidean norm. For each
i, 1 5 i 7 N ,let

bi = E ) -?i

Then b. is the bias of the estimate X.. Let1 1

N
b

1

A
Then bis the average bias of the Xi. Assuming the yi are statistically independent, the follow-
ing result may be derived.

Theorem 1: E ~ -1 2 = - El Xi - E()i l + l~l2
1

Proof:

E -XI 2=E X -E X+ E(X)- 2=E X -E(X) 12 + IE() -1 12

=-E ~ (. - E(i) I2  I i;l2 Q.E.D.

An alternative method for estimating X is the following. Let

1

denote the average of the signals. Treat y as a signal from a pixel and estimate a proportionA A A
vector A and take X as the estimate of X. Then the mean-square error of X given by

57



L FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

EH1X - ;I
2  

O

satisfies (still under the assumption that the yi are statistically independent),

A

Theorem 2: E -(X 2 _ -
N

where

T = max trace M.
1

m

and 3 depends upon A but not N.

The proof of Theorem 2 depends upon three lemmas.

A
Lemma 1: Let y be a data point and let X be the standard estimate of the true proportion

vector X corresponding to y. Then

IA -AXIl I y-AXI I

Let L denote the linear hull of the fundamental simplex S; i.e., L is the set of vectors with

components summing to one. Clearly, L contains S, the fundamental simplex. The linear hull

LA of the signature simplex SA is defined to be the set of points in signal space of the form

A7 for 77 in L

Lemma 2: Let L be the linear hull of S with A nondegenerate. Then a P (depending on A)

such that

-- I A12 -2A-A II2

for all 7 and in L. (0 may be taken as the reciprocal of the smallest eigenvalue of BTB

where the (n + 1) x (m) matrix B is obtained from A by the addition of a row of l's. The fact

that BTB is nonsingular is a consequence of the fact that the signature simplex is

nondegenerate.)

Lemma 3: Let Mi, 1 - i - m be positive definite symmetric matrices. Let y be a vector-

valued random variable with mean zero and covariance matrix Mx given by

m

MX = M X]

j=l

where X is in S and XJ denotes its j-th component. Then

EIIyl 2
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where

7 = max trace M.

1 i m

A
Proof of Lemma 1: Consider the triangle with vertices y, AX, and AX. Let a denote the

A A
angle at vertex AX. Since AX and AX are both in SA, every point on the line segment between

them is in SA . If a < . radians, there would be a point Ako on this segment closer to y than
A A

AX. This would contradict the choice of X. Therefore a 2 radians, and consequently the

length of the largest side of the triangle is l y - AX I. Since ) JA - AX I is the length of

another side of this same triangle, the lemma follows.

Proof of Lemma 2: Let B be the matrix obtained from A by adding a column of l's.

Since A is nondegenerate,

B B is nonsingular

Let 7 and be in L and let w = 7 -1 . Then the sum of the components of w is zero and it

follows that

A TAw = BTBw

Then

IIA - A II2 = IIAwI 2 = <ATAw, w> = <BTB, w> -> (1Yc112

where a is the smallest eigenvalue of B TB. This last equality is a well known property of

positive definite symmetric matrices. Thus

1 - 12 1lwl 12 1A - A 12  Q.E.D.

Proof of Lemma 3:

m m m
El lyll2 = . = e MX = trace = (trae M) XJ = Q.E.D.

1 1 1

Proof of Theorem 2: There are positive numbers 0 and 7 such that

El X - 1 2 E IAX - A1i2  (by Lemma 2)

-2
< E ly - AXi2  (by Lemma 1)
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(Equation Continued)

SN2

=f3E (y, - AX) = LE i -A 2i

< L (by Lemma 3) Q.E.D.
=N

We now turn our attention to theorems concerning averaging procedures using the sim-

plified proportion estimator X. As before, let L denote the linear hull of the fundamental

simplex S and let LA denote the linear hull of the signature simplex SA. Re.call that for a

point 7 in L, ?@ denotes the vector obtained by setting all negative components of ?i equal to

zero. Let p = p(77) denote the sum of the positive components of 77. Note that p - 1 because

the sum of all the components of 77 is 1. Now let 77 = 77• Note that 77 is a proportion vector.

Let Py denote the orthogonal projection of the signal y onto LA, i.e., Py is the unique

point in LA closest to y. Py has a representation

Py = A7

for some 71 in L. This representation is unique for nondegenerate SA . If X is the true

proportion vector of the pixel represented by the signal y, then the simplified estimator

x of X is defined to be
o o

Some properties of X with respect to averaging procedures will be examined. These
A

properties are similar to the corresponding averaging properties of the estimator X. As be-

fore, let yi, 1 5 i < N, denote a signal from a pixel with true proportion vector Xi . The region

represented by the aggregate of the N pixels would then have true proportion vector X given by

N

i=l

Here we are assuming pixels of equal size. If we estimate Xby averaging the estimates ki
from the individual pixels, we obtain the estimate

i 1N

i=l

Let

b. = E(i.) - X.
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and let b be defined by

- 1 N

b = N bi
1

Then b is the average bias of the estimators X., and the mean-square error of the estimator

X is given by

El- - 2112

Assuming the yi to be statistically independent, we have Theorem 3:

Ell - 2 1N 2 2
El N2K (i - E(ii) +Zbx -

1

Proof:

ElKJ E- l I2 E iX- E( + E( X) I =EJI -E(X)1 2 + IEE) l2

( E()) + 2 = E - E(Xi)l + 11I Q.E.D.

Now let

- 1
y =Nlyi

and let A denote the simplified proportion estimate for the signal y and consider X as an

estimate of k. Then

Theorem 4: Ell - I - mN7

where m is the number of pure signatures

7 = max trace M.

1 i m

and p depends upon A but not N.

The proof of this theorem requires the following additional lemma:

Lemma 4: For all 77 in L and X in S

I 7 - 12  mlI 17 - xl12
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Proof of Lemma 4: Let 77 E L and X e S. If 77 E S, then 7 = e and the result follows.

Therefore, we assume that 77 j S. Therefore 77 has some negative components. Let v denote

the number of negative components of 77. Then since 77 also has positive components, it

follows that

1 v m - 1 (B-1)

Let 770 denote the vector obtained by setting the non-negative components of 77 equal to

zero. Then

77=77 +77 (B-2)

77 is orthogonal to 77 (B-3)

Let X1 denote the vector obtained from X by setting the j-th, 1 < j _ m, component of X

equal to zero when the corresponding j-th component of 77 is negative. Let X2 denote the vec-

tor obtained from X by setting the j-th, 1 : j _ m, component of x equal to zero when the cor-

responding j-th component of 77 is non-negative. Then

S= 1 +X 2 (B-4)

Xl is orthogonal to X2  
(B-5)

1112 _ 1 (B-6)

1 21 2 l 1 (B-7)

x1 is orthogonal to 77 (B-8)

x 2 is orthogonal to 77 (B-9)

Let 0 be the sum of the positive components of 77 and let p = 1 + e. Then

E> 0 (B-10)

Now,

[---xI 2 .X (by def. of 77)

2

S L1  2 2 (by Eq. B-4)
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- - 1  + 2 12 (by Eqs. B-5 and B-9)

1 -2 IJ i - - Ex1 + I1x2 112(1 +e)

< I17 xi - EXl 12 + 2 112

j< - i+EIIX II + 1 112

= ill 2 + 2EIX L-j in - X1 I + E21X 112 + 1IX211

2 l + 2E 71 - ll+ E + 1 2 i 2  (by Eq. B -6)

Therefore,

i -x 2 771-XI2 + 2E 1' 2+ X 211 2  (B-11)

Now consider 1I 77112. The sum of the components of 77 is -e. Therefore, the minimum

value of 11 12 occurs when 779 has each of its v nonzero components equal to -. Thus,

S11>7E112

and from Eq. (B-1), it follows that

2
77 (B-12)

Now,
2

- x1 2 = I + x1 - x211 (by Eqs. B-2 and B-4)

= - X1 I + - 2 (by Eqs. B-3, B-5, B-8, B-9)

= 17 - 11 2 + 1 2 - 2 <7, x2 >+ 1 2 112

I 12 2 2

S - 1  + E + 11x 2 12 (by Eq. B-12)
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Therefore,

- 112 > -l +m- 1+ h 12 (B-13)

Then,

m- = x 2 E + im- -E

+ (m - 1) 11 2 112  (by Eqs. B-11 and B-13)

> - 1)1/2 
1 /2 ]2

> 0 Q.E.D.

R. Kauth has pointed out that m is not the best possible bound. He has outlined a proof that

7; - 12  Cm l n-x12

where

(1 + m) 2  
m odd4m modd4m

m m+24 m even

and that Cm is the best possible bound.

Proof of Theorem 4: Let P denote the orthogonal projection of signal space onto LA, the

linear hull of the signature simplex SA. Let L denote the linear hull of all proportion vectors.

Then

PYi = A7i for some unique 7i in L, 1 = i - N

Set

1N

Then Py = A7 and there are positive-number 3 and 7 such that

E[X-X~-1 2  =EI - -12

= mE 11 - 112  (by Lemma 2)
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(Equation Continued)

= m3E lAi - A112  (by Lemma 4)

= mpE I Py - A12

< mpE(Py - A 112 + Ily- P7112 )

= mPE Iy - A112

The last equality follows from the fact that y - Py is orthogonal to LA, which contains Py

and AX. Continuing, we have

EI X- X 2 = m3EIly - AX11 2

= mpE N (yi - AXi)j 2

1

< mp'r Q.E.D. (by Lemma 3)N=-
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Appendix C
DESCRIPTION OF MIXTURES DATA SIMULATION PROGRAM

To facilitate testing of the ERIM proportion-estimation algorithm, a computer program

was written to generate simulated multispectral data of the type that would come from a mix-

ture of materials. This was necessary to insure that completely reliable "ground truth" was

available for each data point, so that meaningful mean-square errors of estimation would be

calculated over large areas. Written for the IBM 7090, this program is described in detail

below.

The mixtures data generated by Program SIM are based on the ERIM mixtures model, and

may be either pure mixtures of known materials or may contain a proportion of alien material.

Any signature set may be used to generate the data, including signature tapes written on the

CDC 1604. The actual distribution of alien materials and the proportion vectors are governed

by parameters set by the user. The program is written as an External Function in MAD on the

IBM 7094.

C.1 THE MIXTURES DATA MODEL

No matter whether the pixel contains a "pure" material or a mixture, it is assumed that the

signal s from any given pixel is a Gaussian random variable with mean vector A and covariance

matrix M. The ERIM mixtures model relates the statistics of the pure signatures to the statis-

tics of the mixture according to the formulae

m
A =iXA i = mixture mean

i=l

m
M = iMi = mixture covariance

i=l

where X is the proportion of the i-th "pure" material in the pixel, A. its signature mean, and M.
1 1

its signature covariance matrix. This can be extended to the case where there are two classes of

materials, each with its own proportions Xi over the class. Let there be t materials in the first

class and u materials in the second class. Let the pixel be completely covered by the two classes

and let 5 be the proportion of the second class in the pixel. Then the model implies that

t u .
A =(1- A.- + A Ai+t

i=1 i=1

M = (1 - ) Mi + ~X+tMi

i=1 i=1
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The two classes might be taken to be "user" and "alien" materials, where "user" materials are

known materials for which suitable signatures are available. Then 4 is the proportion of alien

material in the pixel. Note that 4 and the Xi are themselves random variables over a collection

of pixels.

For each pixel, we desire to "randomly" choose A and M such that they specify an appro-

priate mixtures distribution. Before this can be done, it is necessary to choose random values

of 4 and the Xi. Given the number of materials in a pixel, the A1 are to be uniformly distributed.

The number of "user" signatures or "alien" signatures actually employed to generate the data

is also a random variable and is taken to have a certain distribution over the set (1, 2, . . . , t).

The distribution function F(x) of 4 used in the program is

0 forx<0

F(x)= a+(1 - a- e) for 0 5 x 1
1-e

1 for x - 1

where a is the probability that the pixel contains "user" material only, 0 is the probability that

it contains "alien" material only, and y is another parameter.

For each pixel, the program must determine randomly how many "user" materials and how

many "alien" materials are in it, and this requires some prior statistical information. It would

suffice to specify the quantities

u A
Pi and pA

which are the probabilities that the pixel contains exactly i "user" materials and j "alien" ma-

terials. In an agricultural application, these quantities are related through the geometry of the

field configuration and can be computed from the parameters Tu and TA . Both of these repre-

sent an average ratio of field length to pixel edge, but one is used for the pU and the other for

the p . The following formulas were derived:

p 1(T) = (1 - T)2

p 2 (T) = 2T- 2.5
2

p3(T) = 2

p 4 (7) = 0.5
2
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assuming that there can be no more than four fields in a pixel. These formulas can be used for

either pA of Pu. In the existing program we have added (for "user" materials)

p 5(7-) = 0.25 2
0.252

p 6 () =0.252

since, for a very small field size, it might be possible to have as many as six fields overlap in

one pixel. Program SIM allows a maximum of six user materials and three alien materials per

pixel. For both alien and user materials, the p i(7) are normalized to sum to 1. Once these pi
are determined, the program can randomly choose the numbers t and u of materials in each

pixel and then "randomly" choose the proportions X.

Given the extended mixtures model

t . u i+t
A = (1 - )L-X iA + - X Ai+t

i=1 i=1

t . u .
M = (1 - ) .XM + 4  1+tM

i+t
i=1 i=l1

the A. and Mi, and the random quantities 4 and X, the mixture signature mean A and covariance

M can be computed. A sample from the Gaussian distribution with mean A and covariance M is

taken as the signal vector for the pixel.

C.2 A DESCRIPTION OF EXTERNAL FUNCTION SIM

All of the programming required to generate the data is done in SIM, which is written as an

External Function. Writing the data out on tape in standard ERIM multispectral format is accom-

plished by OUT 94, a special output routine. Both are called by a small enabling program

which first reads certain data (see below) and instructs the operator to mount a signature tape

from which the simulated mixtures data are to be generated. The first call to SIM (from the

enabling program) computes certain variables and sets up variables required for linkage to

OUT94. Succeeding calls are made by OUT94 to Internal Function LINE (part of SIM) in order

to generate the data vector for each point. The data vector, which is partly the generated sig-

nal vector and partly a vector of "ground truth" proportions, is packed by a special subroutine.

When a complete packed line of data has been generated, it is passed back to OUT94 to be

written out on tape.

In order to interface with Assembly Line, External Function SIM contains the Assembly

Line Common Block of Q-variables. In the first part of the program certain of these Q-vari-
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ables are set, and certain SIM variables are set to zero or their default values. The variables

SCAL, MODE, IPRINT, SUNIT, IPRIN2 are then read via a READ AND PRINT DATA statement,

and a data title is read in. The signatures for the "user" and "alien" materials are read in via

READMX, with SCAL = 51.2 if CDC-1604 signatures are used. Finally, the pi are computed-

the first six for "user" signatures and the last three for the "alien" signatures. These are

normalized to sum to 1. The arguments for the random number generators (RND for uniform

and RNP for normal distribution) are initialized to zero and SIM then returns to the enabling

program.

The remaining portion of SIM consists entirely of Internal Function LINE, which generates

a complete packed line of multispectral data. This is a program entry to SIM and is called by

OUT94 each time a line is to be generated. If the line number requested is too large, LINE re-

turns to OUT94 where an end-of-file is written on the tape. Otherwise it starts by setting up

the arguments required for PAK so that the packed output line can be stored in lower Erasable.

The random number generator is "warmed up" by exercising it 50 times. LINE then enters a

loop which generates the individual data points for the line requested by OUT 94. This loop,

which ends at ENDL, does the following:

(1) Determines proportion of alien material in the pixel.

(2) Selects number of "user" materials that will occur in the pixel.

(3) Selects number of "alien" materials that will occur in the pixel.

(4) Randomly chooses the subset of materials for (2).

(5) Randomly chooses the subset of materials for (3).

(6) Generates a partial proportion vector, u', corresponding to "user" materials.

(7) Generates a partial proportion vector, X A , corresponding to "alien" materials.

(8) From (1), (6), and (7), computes the total proportion vector, X = (1 - ()X u + X)A -

(9) Using X and the signature statistics A i and Mi, computes the mixture signature mean

A and covariance M.

(10) Chooses a sample X from the normal distribution determined by A and M. (This

requires a Cholesky decomposition and matrix multiplication.)

(11) Forms combined vector (x, X) and "packs" it in ERIM output format using PAK.

(12) Goes to next point; if last point is done, calls final entry to PAK.

(13) Returns to OUT94 and writes packed line on tape.

The number of components for X is always 9, although some may be zero. The number of data

channels may be as large as 15, so the total vector of data plus ground truth proportions may

have as many as 24 components on the output. When OUT94 has written the last line, it returns

to the enabling program, which then terminates.

69



A RIM FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

How to Use SIM

The program deck for generating simulated data must include the following:

* A source deck for the enabling program (described below)

* Binary decks for SIM, PAKH, and READMX

* Data (described below)

The enabling program must be of the form

*MAIN PROGRAM TO ENABLE SIM

N'R

P'N Q(225)

"Dimension," "Erasable" statements

F'T

READ AND PRINT DATA

Mount signature tape on SUNIT

SIM.(NSIG, NCHAN, NSS, TAU1, TAU2, NUSER, NALIEN, ALFA, BETA, GAMMA)

OUT94. (F, L, S, UNIT, BIN1, BIN2)

E'M

and the arguments to SIM and OUT94 are read in via the READ AND PRINT DATA statement.

SIM itself has certain "input" variables which need not be read in since they are set to default
values. These are

SCAL (default = 1.0)

MODE (default = 1)

IPRINT (default = OB

IPRIN2 (default = OB

and they can be changed via the READ AND PRINT DATA statement of SIM.

A list of input variable definitions follows:

NSIG = number of signatures used (NALIEN and NUSER)

NCHAN = number of data channels to be used

NSS = number of points per line generated by SIM

TAU1= value of 7for computing pi for "user" signatures

TAU2 = value of 7 for computing pi for "alien" signatures

NUSER = number of user signatures to be read

NALIEN - number of alien signatures to be read

ALFA, BETA, GAMMA = parameters used to calculate (defined previously)

F = first line number

L = last line number
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S = line number interval

SUNIT = tape drive for signature (input) tape

UNIT = tape drive for output tape

BIN1, BIN2, bin location of first and last output tapes

SCAL = scale factor for reading signatures via READMX (should be 51.2 for 1604 tape)

MODE = MODE argument of READMX

IPRINT, IPRINT2 = Boolean switches for providing debugging output from SIM

The data deck consists of a $DATA card plus input corresponding to two READ AND PRINT
DATA statements. The first is from the enabling program and specifies values for the vari-
ables

NSIG, NCHAN, NSS, F, L, S, UNIT, BIN1, BIN2, TAU1, TAU2, NUSER, NALIEN, ALFA,
BETA, GAMMA

The second is from SIM itself and may specify any of the following:

SCAL, MODE, IPRINT, IPRIN2, SUNIT

which will be set to default values if not specified in the output. After these, the input deck must
include a card specifying a title for the simulated data. The title may occupy up to 72 columns.
An output tape with a write ring inserted into the back of it must be mounted on the tape drive

whose number is specified by the variable UNIT. Data is generated by SIM at a rate of about

0.5 sec per point.

C.3 GENERAL REMARKS

This program can provide data for testing any of several recognition or estimation tech-

niques, eventhough it does notprovidefor ageometric configuration "fields." It might be de-
sirable to modify SIM so that more than one data point can be sampled from each mixture dis-
tribution.
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